Unexpected High Winds in Northern New Jersey: A Downslope Windstorm in Modest Topography
نویسندگان
چکیده
This study presents the first evidence for the occurrence of a downslope windstorm in New Jersey. During the early morning hours of 4 January 2009, an unanticipated strong wind event was observed. Despite a zone forecast calling for winds less than 4 m s issued 4 h prior to the event, winds up to 23 m s were reported at High Point, New Jersey (elevation 550 m), with gusts to 30 m s in its immediate lee (elevation 311 m). These winds were highly localized; a nearby Automated Surface Observing System (ASOS) station (Sussex, New Jersey, 12 km distant) reported calm winds between 0700 and 1000 UTC, just as the winds were peaking near High Point. High Point is the highest point in New Jersey, and is part of the quasi-two-dimensional Kittatinny Mountain extending from Pennsylvania into New York. This study tests the hypothesis that the topography of High Point, upon interacting with the local atmospheric stability and wind profiles, was sufficient to produce a downslope windstorm, thus causing these unusual winds. The results indicate that the presence of a sharp low-level temperature inversion in combination with a northwesterly low-level jet perpendicular to the ridge provided the key ingredients for the strong winds. Linear theory does not appear to explain the winds. Instead, prior studies incorporating nonlinearity predict a trapped lee wave or possibly a hydraulic jump, and model simulations suggest that High Point was indeed tall enough to generate such a wave along with rotors, although observations were not available to confirm this. Given sufficient model resolution, many aspects of this event were predictable. Similar windstorms have occurred before at High Point, but observations show that this event was the most amplified in recent years.
منابع مشابه
The interaction of northern wind flow with the complex topography of Crete Island – Part 1: Observational study
The island of Crete with its mountain ranges is an excellent example of a major isolated topographic feature, which significantly modifies the regional airflow as well as the pressure and temperature fields. During summer, when northerly winds are blowing over the Aegean Sea (a large number of which are characterized as Etesians), the highly complex topography of Crete plays an important role i...
متن کاملThe interaction of northern wind flow with the complex topography of Crete Island – Part 2: Numerical study
During the summer months, when northerly winds are blowing over the Aegean Sea the island of Crete modifies significantly the regional airflow as well as the pressure and temperature fields due to its complex topography. One of the major topographical elements of Crete Island is the major gap which is located between the two highest mountains Lefka Ori and Idi. On 24–25 August 2007 strong north...
متن کاملThe High Park fire: Coupled weather-wildland fire model simulation of a windstorm-driven wildfire in Colorado's Front Range
Weather affects wildland fires at scales frommultiseasonal precipitation patterns and anomalies, through synoptic and mesoscale weather patterns, to convective scale motions including fire-induced winds. This work analyzed the first day’s growth of the 2012 High Park fire, which occurred in Colorado’s Front Range during widespread drought and an unseasonal June windstorm, assessing to what exte...
متن کاملMoist Dynamics and Orographic Precipitation in Northern and Central California during the New Year’s Flood of 1997
The dynamics of moist orographic flows during the January 1997 floods in northern and central California are investigated using numerical simulations computed with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5). Early in the event (31 December 1996–1 January 1997), the low-level winds offshore of California’s central ...
متن کاملModeling the Pathways and Mean Dynamics of River Plume Dispersal in the New York Bight
This study investigates the dispersal of the Hudson River outflow across the New York Bight and the adjacent innerthrough midshelf region. Regional Ocean Modeling System (ROMS) simulations were used to examine the mean momentum dynamics; the freshwater dispersal pathways relevant to local biogeochemical processes; and the contribution from wind, remotely forced along-shelf current, tides, and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011